
KSH(1) (Cheat Sheet) KSH(1)

General
In the following group, the filename may be replaced with the value of a variable, if desired, as long
as the rules in the VARIABLES section are followed.

The redirection mechanisms can be applied to complex shell commands as a whole if the shell com-
mands are placed within parenthesis, ie.

date > file
ls -l >> file
who >> file

is the same as

(date; ls -l; who) > file

which runs the commands in a subshell (causes fork()), or

{ date; ls -l; who; } > file

which runs the commands within the current shell (no fork())

< file
Read input from the given file instead of from the keyboard, ie. "redirect stdin from file".

> file
Write output to the given file instead of to the screen, ie. "redirect stdout to file".

2> file
Write errors to the given file instead of to the screen, ie. "redirect stderr to file".

2>&1
Send stderr to the same place that stdout is going. This copies the file descriptor from stdout to stderr
instead of open’ing stderr again, so the two data streams share the same buffer instead of each having
it’s own buffer.

Double Quotes (stands for DO dollar signs)
Allow variable substitution, but prevent any other interpretation, such as I/O redirection, wildcards,
etc.

Single Quotes (stands for SUPPRESS dollar signs)
Prevent any interpretation of the contents.

\ The backslash does the same thing as single quotes, but only for the immediately following character.

General
Variables are used to contain values that may change during the execution of the shell. Typically,
these are filenames, data read from the keyboard or a data file, calculated values, or similar.

Variables may contain spaces, tabs, or other characters considered to be delimiters by the shell, so
any time you want to use the value of a variable you should place double quotes around it.

Modifiers
The value of variables can be modified before being used if the variable name is enclosed within
braces ("{" and "}") and the appropriate modifier characters are used:

${var-string}
Use the value of var unless it’s empty; then use string.

${var=string}
Use the value of var unless it’s empty; then assign string to var and use it.

KSH(1) (Cheat Sheet) KSH(1)

${var?string}
Use the value of var unless it’s empty; then print string as an error message end terminate the
shell.

${var+string}
Use the value of var unless it’s NOT empty; then use string.

${var#wildpat}
Use the value of var after removing any characters from the front of the value which match the
wildcard pattern wildpat. The characters matched by the pattern are the shortest possible
string.

${var##wildpat}
Same as above, but the match is the longest possible string.

${var%wildpat}
Same as #, but this one trims from the end of the string instead of the beginning. It matches the
shortest possible string.

${var%%wildpat}
Same as above, but the match is the longest possible string.

$$ The process id of the shell. This is usually used for temporary filenames, such as /tmp/$0.$$.

$! The process id of the last job to be executed in the background.

$0 Name of the shell script that is running. It may include a pathname, so it would be more appropriate
to use basename, or a similar construct, to remove the directory component before using it in an out-
put statement.

#!/bin/ksh
PROG=$(basename $0)
USAGE="Usage: $PROG fromfile tofile ..."

or

#!/bin/ksh
PROG=${0##*/}
USAGE="Usage: $PROG fromfile tofile ..."

$1-$n
These represent the command line parameters provided by the user of the script when it was
executed.

$# The number of command line parameters.

"$@"
The values of the command line parameters with double quotes around individual parameters.

The last three variables, $n, $#, and $@, are specific shortcuts of the general technique of accessing
elements of an array:

${array[n]}
This accesses the nth element of array.

${array[@]}
This accesses all of the elements of array.

${#array[@]}
This provides the number of elements in array.

KSH(1) (Cheat Sheet) KSH(1)

Always put double quotes around variable values.
Such as if [[-f "$dir/$1" -o -d "$dir/$1"]]

This rules prevents the shell from interpreting any spaces that might appear within the value of a vari-
able (obviously, if a variable cannot contain spaces, tabs, or newlines, then you needn’t use double
quotes — an example would be $$ or $#). It also prevents errors when a variable is empty and the
value is used in a location where a value is required. This is common inside [[and]] and when
changing the command line parameter list via set --.

Always use ((and)) for numeric tests.
Such as if ((count < high))

Always use [[and]] for string and file tests.
Such as [["$var1" = "$var2" -o -r "$file"]]

Never put spaces around the equal sign in variable assignments.
Such as typeset -i count=10, or progname="$0"

Always put spaces everywhere else!
Such as around the fields within [[and]] or ((and)). Always put spaces on both sides of command
names and keywords such as if, then, else, elif, fi, while, for, select, do, done, case, in, esac, let, and
any other built-in or regular (external) commands.

